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TABLE 1.—STARC-ABL SUBSYSTEM SENSOR MEASUREMENTS

Standard
Subsystem Sensed parameter deviation,
percent
N3 Core speed 0.0477
P13 Bypass duct total pressure 0.1671
P2s LPC exit total pressure 0.1205
Tas LPC exit total temperature 0.0306
Turbofans - -
Ps3 HPC exit static pressure 0.0620
Ts HPC exit total temperature 0.0292
Tag Exhaust gas temperature 0.0271
Wre Fuel flow 0.4687
Qur | Turbofan low pressure shaft torque 0.0984
Electrical
P Igen Generator current 0.0145
ower Tbus Bus current 0.0147
Systems
Iimot Motor current 0.0149
Qutail Tailfan shaft torque 0.0486
Tailfan Ps Exit total pressure 0.1732
Ts Exit total temperature 0.0430

The sensor measurements acquired from each STARC-ABL subsystem and their standard deviations
are shown in Table 1 and the 27x27 sensor measurement covariance matrix, R, is shown in Figure 5.
Portions of the R matrix are color shaded to denote sensor measurements acquired from different sections
of the STARC-ABL architecture. Turbofan sensor measurement covariance is shown in green, electrical
power systems sensor measurement covariance is shown in yellow, and the tailfan sensor measurement
covariance is shown in blue. It is assumed that no correlation exists between any of the 30 sensor
measurements, and thus R is a diagonal matrix.

The STARC-ABL health parameters and their standard deviation are shown in Table 2 and the
30x%30 health parameter covariance matrix, P, is shown in Figure 6. Color shading is once again provided
to highlight different portions of the architecture. Historical data on aircraft engine performance
deterioration levels provided in References 12 and 13 indicates health parameter values ranging from
approximately 1 to 10 percent, dependent on engine module. For the simulation study presented in this
paper, each turbofan and tailfan health parameter was arbitrarily assumed to have a standard deviation of
2.5 percent and a variance of 6.25 percent squared. Additionally, the flow capacity and efficiency health
parameter pairs within an individual turbomachinery module are assumed to exhibit degradation in a
coupled fashion. Fan and compressor module flow capacity and efficiency health parameters have a
covariance of 3.125 percent squared while turbine module flow capacity and efficiency health parameters
have a covariance of —3.125 percent squared. The turbine efficiency to turbine flow capacity covariance is
chosen to be negative as turbine efficiency tends to decrease with degradation while turbine flow capacity
tends to increase with degradation. The latter is due to increased clearances and fouling requiring more
airflow through the turbine to produce the same level of work. Conversely, all fan and compressor health
parameters generally tend to decrease with increased degradation and thus their covariance is positive.
Electrical power system components are assumed to experience relatively limited levels of health
parameter variation as they are not subjected to the same fouling and erosion degradation mechanisms
that turbomachinery hardware is.

For this study it is arbitrarily assumed that electrical power systems health parameters have a standard
deviation of 0.1 percent and a variance of 0.01 percent squared. Furthermore, it is assumed that no
covariance exists between electrical power system component health parameters.
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Figure 5.—Sensor Measurement Covariance Matrix, R.
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TABLE 2.—STARC-ABL SUBSYSTEM HEALTH PARAMETERS

Standard
Sub-system Health parameter deviation,
percent
YFAN Fan Flow Capacity 2.5
TMFAN Fan Efficiency 2.5
YLPC LPC Flow Capacity 2.5
nLPC LPC Efficiency 2.5
YHPC HPC Flow Capacity 2.5
Turbofans NHPC HPC Efficiency 2.5
YHPT HPT Flow Capacity 2.5
MNHPT HPT Efficiency 2.5
YLPT LPT Flow Capacity 2.5
MNLPT LPT Efficiency 2.5
. Tgen Generator Efficiency 0.1
Electrical Trect Rectifier Efficiency 0.1
Power -
Ninv Inverter Efficiency 0.1
Systems -
Nmot Motor Efficiency 0.1
. YEAN Tailfan Flow Capacity 2.5
Tailfan NFAN Tailfan Efficiency 2.5
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